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ABSTRACT

The reduction of complex systems to their essential degrees of freedom (e.g., patterns spanning that part of
state space that the system’s trajectory passes in time) and development of reduced models based on these might
be one tool for improving basic understanding of simulation results obtained from current, increasingly more
complex, meteorological circulation models. Some successful work on the reduction of complex systems by
principal interaction patterns (PIPs) or empirical orthogonal functions (EOFs) has already been done. However,
the parameterization of the influence of unresolved modes onto the selected patterns, called closure in this
context, is still an outstanding problem. Nonlinear closure schemes, although greatly improving prediction on
shorter timescales, have so far been observed to lead to absolute instability of the reduced model, that is,
explosive unbounded energy growth after some integration time. In this work a method is outlined for circum-
venting this problem. Energy conservation constraints are formulated that can be used in the extraction of a
useful empirical closure from synthetic model data by minimizing the error between tendencies in the full and
the reduced model with the closure parameters as variables. In the present context the computational size of the
associated minimization calculations could be reduced by utilizing the zonal symmetry in the full model’s forcing
and boundary conditions. So it could be shown that each EOF or PIP must be an element of the subspace of a
single zonal wavenumber. Coupling conditions for the closure coefficients are derived that further decrease the
dimensionality of the problem. The method is tested by reducing multiple baroclinic wave life cycles in a
quasigeostrophic two-layer model on the basis of both EOFs and PIPs. It is shown that the aforementioned
stability problems connected with the nonlinearity of a closure are indeed avoided by the method. Furthermore,
the closure greatly improves the simulation capabilities of the reduced model both on short and long timescales.
In contrast to previous results on linear closure schemes, the authors find that in nonlinear closure schemes also
the linear terms have to be handled carefully in order to ensure realistic behavior of the reduced model on longer
timescales. In a comparison between reductions based on EOFs and PIPs substantial superiority of the latter in
effectively extracting the essential degrees of freedom is demonstrated.

1. Introduction

Parallel to a dramatic increase in available computing
power, meteorology has experienced a continuous rise
in the complexity of standard models used for the study
of atmospheric behavior. Thus, more and more realistic
simulations of ever finer details have become possible.
With their growth in complexity, such models, however,
also lead to an increasing need for tools to help us gain
basic understanding of simulation results. Among oth-
ers, one class of such tools might be algorithms pro-
viding a reduction of complex systems to their essential
degrees of freedom. They could considerably increase
the transparency of the examined system and give us
helpful clues to a deeper understanding of underlying
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processes and of the interaction between dominant com-
ponents contributing to atmospheric variability on var-
ious timescales.

Several methods have been suggested for the iden-
tification of meaningful basic patterns of atmospheric
dynamics. Point-correlation maps of atmospheric data
have proven very useful for the identification of major
hemispheric-scale flow patterns such as the Pacific/
North American and North Atlantic Oscillation patterns
(Wallace and Gutzler 1981). Frederiksen (1982, 1983)
and Frederiksen and Bell (1987) examined the most
unstable normal modes of a quasigeostrophic two-layer
model with orography and nonzonal forcing. They were
able to associate these as well to elementary processes
like cyclogenesis and onset of blocking as to the afore-
mentioned teleconnection patterns. Simmons et al.
(1983) could show that teleconnection patterns can al-
ready be identified among the normal modes of a sim-
ilarly forced barotropic model. A useful method for ex-
tracting dynamically relevant empirical normal modes
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directly from observed data has been suggested by Bru-
net (1994). A set of patterns to be seen in contrast to
normal modes, and possibly better suited for an insight-
ful solution, especially of meteorological initial value
problems, are optimal vectors (e.g., Farrell and Ioannou
1996 and references therein). Another interesting ap-
proach is EOF analysis. Rhinne and Karhilla (1975) and
Schubert (1985, 1986) have investigated dynamical in-
teractions between EOFs determined from atmospheric
observations. They could show that a few dominant
EOFs are able to describe the predominant part of the
observed tendencies at a quality comparable to grid-
point or spectral models with much larger numbers of
degrees of freedom. Another possibility is direct utili-
zation of observed dynamics in the form of measured
tendencies. This is the aim of a principal interaction
pattern (PIP) analysis (Hasselmann 1988). Assuming
some general form for the nonlinear equations deter-
mining the interaction between the different structures,
both patterns and interaction coefficients are determined
simultaneously by minimizing a function that measures
the error between tendencies as given by the reduced
model and the full system. Useful results have already
been achieved in identifications of patterns with a pre-
dominantly linear behavior, so-called principal oscilla-
tion patterns (POP). Among numerous examples an in-
teresting work is that of Schnur et al. (1993), where
POPs have been identified in atmospheric data resem-
bling baroclinic waves in their respective growth and
decay phases. First successful nonlinear PIP analyses of
atmospheric models have been performed by Achatz et
al. (1995) and Kwasniok (1996). A further development
of the technique using adjoint methods has recently been
published by Kwasniok (1997).

Reduced models, that is, starting from a number of
the identified patterns that should be much smaller than
the number of degrees of freedom of the full system,
evolution equations for the expansion coefficients of the
system’s state vector with respect to these, have been
formulated and examined for the case of EOFs (Selten
1993, 1995a,b) and PIPs (see references above). In these
cases reduced, projected, and truncated models have
been obtained by approximating the system’s state vec-
tor by a superposition of these patterns, inserting it into
the known dynamical equations of the full system, and
projecting these via a Galerkin projection onto the pat-
terns under consideration. For the examined—relatively
simple—systems it has been demonstrated that reduced
models are able to simulate the full system faithfully on
the basis of a much reduced number of degrees of free-
dom. Such models, however, cannot achieve the most
effective possible reduction since they do not include
any parameterization of the influence on the considered
patterns by modes not explicitly taken into account in
the reduction. In order to achieve faithful simulations
such models therefore usually still must include com-
parably many patterns. This might be avoided by using
a low-order model that differs from the purely projected

and truncated version by some so-called closure scheme
taking the coupling between unresolved modes and lead-
ing patterns into account—resembling closely the at-
tempt to parameterize in spectral circulation models the
effect of neglected small-scale spherical harmonics by
the usually added horizontal diffusion. In other words,
the art of finding the best possible reduced model con-
sists in finding the best possible closure. Certainly it
might be most attractive to derive such a scheme in an
analytical manner (e.g., as described by Lindenberg and
West 1984). However, in most applications this seems
to be extremely difficult. Therefore an empirical–statis-
tical approach might have better prospects as a practical
way to determine for a given set of patterns a useful
closure parameterization. Some first successful steps in
this direction have already been taken. Kwasniok (1996)
included in his PIP algorithm a free fit of the linear
tensor of the reduced model, thereby obtaining notable
improvement in prediction and simulation capability
over the truncated model. Similar success for EOF mod-
els has been reported by Selten (1995a). Selten (1995b)
has even gone a step further by determining all inter-
action coefficients of his quadratic EOF model such that
they are best able to reproduce the local tendencies of
the full system. The reduced system thus identified is
indeed much more powerful as for its short-term pre-
dictive capabilities. A drawback so far, however, is that
long-term integrations of the model are not possible
since after about 20 days its energy starts to grow with-
out bounds. It has been suggested by the author that this
problem might be removed by two different approaches.
The first would be to determine the reduced model from
data of the full system that are slightly perturbed away
from its true climate. The system tendencies used for
the determination of the low-order model are then hoped
to contain enough pull toward this climate so that this
might also be reflected in the tendencies simulated by
the low-order model, thereby preventing it from moving
away too far from the projected system’s climate. The
second approach consists in finding appropriate con-
straints for the closure corrections so that in the adiabatic
case full energy conservation is ensured. In this case
the model energy would be forbidden to grow without
bounds. It can then be hoped that this property is not
destroyed by moving to the more realistic nonadiabatic
case.

Here we follow the second approach in a test of the
possibilities of energy-conserving closures in the re-
duction of multiple baroclinic wave life cycles in a qua-
sigeostrophic two-layer model on the sphere. This spe-
cific scenario is of special meteorological interest by
itself. For references on the phenomenon see, for ex-
ample, Achatz et al. (1995). Its quasi-periodic character,
however, also makes it easier to select useful criteria
for an evaluation of the quality of the reduced model.
Furthermore, the number of data to be analyzed under
avoidance of sampling problems can still be rather mod-
est. The aim of the analysis is twofold: First, to examine
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several methods to obtain the best closed reduced model
for our full system and, secondly, to compare the po-
tential of EOFs and PIPs as basic patterns for low-order
models with energy-conserving closure. Consideration
is being given only to these two kinds of basis patterns
because so far they have been shown to be well suited
for model reductions. For others, for example, normal
modes or POPs, no way has been described yet how to
select among the complete basis provided by the pattern
algorithm the small number of those patterns that are
most important for and best apt to provide a good re-
duced model. The corresponding difficulty lies in the
nonnormality of the basis, leading typically to consid-
erable projection errors when only few of the patterns
are selected. Additionally, because we are looking for
nonlinear reduced models, the nice property of normal
modes or POPs to diagonalize (in complex space) the
operator describing the linear part (in the case of normal
modes with respect to some reference state) of the ten-
dencies of the system is not much helpful any more.
The paper is thus structured as follows. In section 2 we
will describe the two-layer model and the time series
examined. Section 3 contains some useful results on
EOFs and EOF models for systems with zonally sym-
metric boundary conditions and physics, describes both
our approach to ensure that a closure for an EOF model
does not destroy the reduced models stability, and re-
ductions of the multiple baroclinic wave life cycles by
the method. Section 4 repeats the same for PIPs and
compares the results of PIP analysis with the ones for
EOF models. Section 5 summarizes the essentials and
discusses possible extensions and generalizations of this
work.

2. Data

a. The two-layer model

The data used in this work have been obtained by
numerical integration of the equations of a very simple
two-layer model. Nevertheless, it has sufficient simi-
larity to the real atmosphere so as to be able to reproduce
the main features of baroclinic wave life cycles. Starting
with the quasigeostrophic version of the spherical two-
layer model as formulated by Lorenz (1960) surface
friction and Newtonian cooling are included. Further-
more, we have incorporated forcing terms that make a
chosen zonal wind configuration a stationary solution
of the system. In order to numerically stabilize the in-
tegrations weak horizontal diffusion is also needed. Stat-
ic stability is assumed to be a constant. The most drastic
simplification is that the Coriolis parameter is replaced
by a latitude-independent value in the thermal wind
equation as well as in the term describing vertical ad-
vection [B-model; e.g., Baines and Frederiksen (1978)].
Thus we finally end up with two equations giving the
necessary time derivatives:

] ]c
2 2 2¹ c 5 2J(c, ¹ c) 2 J(t, ¹ t) 2 2

]t ]l

21 k ¹ (t 2 c) 1 Fs c

2 2 22 k¹ (¹ (¹ c)) (1)

]
2 2 2 2 2(¹ 2 r )t 5 2J[c, (¹ 2 r )t] 2 J(t, ¹ c)

]t

]t
2 22 2 2 k ¹ (t 2 c) 2 h r (t 2 t)s N f]l

2 2 2 22 k(¹ 2 r )[¹ (¹ t)]. (2)

Barotropic and baroclinic streamfunctions are denot-
ed by c 5 (f3 1 f1)/2 and t 5 (f3 2 f1)/2, where f3

and f1 are the upper and lower layer streamfunctions;
J is the Jacobian operator. The equations are nondi-
mensionalized using a0, 1/V, and ( V2)/(cpb) as length,2a0

time, and potential temperature scale, respectively. Here
a0 is the radius of earth, V its angular velocity, cp the
heat capacity of air at constant pressure, and b 5 0.124;
ks (in this work 0.25 d21) and hN (0.1 d21) are Ekman
surface friction and Newtonian cooling, respectively; Fc

denotes zonal-mean vorticity forcing and tf a forced
zonal shear corresponding to the temperature distribu-
tion forced by Newtonian cooling. Forcing was chosen
such that the equilibrium configuration of the model is
zonally symmetric with u1 5 0 and u3 5 (20 m s21)
sin22w. Here k is the horizontal diffusion applied to the
equations; its value is k 5 1 3 1026a4/d, which is about
as small as possible to prevent the adiabatic limit of the
baroclinic wave life cycles examined here from even-
tually piling up energy at small scales. The parameter
r 5 2 sinw0/( ) contains the latitude w0 chosen forsÏ
the evaluation of the Coriolis parameter (458N) and the
static stability . In the cases presented here we haves
used a static stability 5 0.01 corresponding to a tem-s
perature difference between the layers of 34.5 K. For
details of the derivation of (1) and (2) see Achatz et al.
(1995). Because the quasigeostrophic approximation is
invalid near the equator and variation of the Coriolis
force with latitude is incompletely described by the
model, the scenario examined was chosen to be equa-
torially symmetric. At least in middle latitudes the error
made by the model should not be too dramatic.

For the determination of the synthetic dataset all vari-
ables are represented by a truncated expansion in terms
of spherical harmonics. Horizontal resolution comprises
a triangular spectral truncation at zonal and total wave-
number 42. An explicit time scheme using a variable-
order, variable-step Adams method has been applied as
the integration scheme for the spectral equations.

b. The time series

In order to obtain the desired multiple baroclinic wave
life cycles the model has been initialized with a zonal-
mean wind being equal to the equilibrium configuration
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FIG. 1. The four Lorenzian energy types for days 4000–6000 out
of the time series to be analyzed. Normalization constant is E0 5

)/g (59.042 3 1022 J), where p0 is the surface pressure, V the2 4(p V a0 0

earth’s angular frequency, a0 its radius, and g acceleration due to
gravity. Here K and A denote kinetic and available potential energy
of the eddies (index E) or the zonal-mean wind (index Z).

and a small contribution of the most unstable normal
mode at zonal wavenumber m 5 6 as determined from
an instability analysis of the equilibrium profile. This
initial condition restricts the state vector to be confined
to the subspaces belonging to zonal wavenumbers 0, 6,
12, . . . , 42. Given the equatorial symmetry (so that
spectral coefficients of both streamfunctions are only
nonzero if the total wavenumber n 5 m 1 2k 1 1, k
5 0, 1, 2, . . . ), the number of degrees of freedom in
the problem is thus 42 (real) in zonally symmetric sub-
space and 126 (complex) in wave subspace. The model
has then been integrated for 14 000 d. The resulting four
Lorenzian energy types for days 4000 to 6000 are shown
in Fig. 1. The multiple life cycles are clearly visible.
Two relevant timescales are discernible: one character-
izing the life cycles and one for a modulation of these
with a period of about 400 d. The ability of the reduced
model to reproduce this behavior will be one criterion
in an evaluation of its quality in the further analysis.

3. Reduced models on the basis of EOFs

Before going into any details of the reduction of our
life cycles on the basis of leading EOFs, we will first
derive some useful properties of both patterns and re-
duced model from the zonal symmetry of the system’s
forcing and boundary conditions. After this we will dis-
cuss a general strategy to ensure a realistic time depen-
dence of energy in the reduced model. Here the appro-
priate constraints on the closure will be specified. Fi-
nally in this section, we will examine two different ap-
proaches to determine a good closure from the data and
discuss their respective merits and drawbacks.

a. Consequences of zonal symmetry in forcing and
boundary conditions

The two-layer model has no orography. Its forcing is
purely zonally symmetric. Therefore no longitude
should be dynamically distinguishable from any other.
As a consequence, averaging any product of the devi-
ations of two variables from their time mean at different
horizontal locations over long time should result in a
covariance function that only depends on the difference
between the two longitudes but not on the longitudes
themselves. Taking, for example, these variables to be
the barotropic and baroclinic streamfunctions, this can
be written

1 ˆ[c(l, w, t) 2 c(w)][t(l9, w9, t) 2 t̂(w9)]O
n tt

5 C(l 2 l9, w, w9), (3)

where nt denotes the number of times taken for the
average. Due to the zonal symmetry in boundary con-
ditions and forcing, the time means and must alsoĉ t̂
be independent of longitude. Using the expansions,

` `

m mc(l, w, t) 5 c (t)Y (l, w)O O n n
m52` n5|m|

` `

m iml m5 c (t)e P (w) (4)O O n n
m52` n5|m|

` `

m mt(l, w, t) 5 t (t)Y (l, w)O O n n
m52` n5|m|

` `

m iml m5 t (t)e P (w), (5)O O n n
m52` n5|m|

and analogous ones for the time means, where andmYn

are the well-known spherical harmonics and asso-mPn

ciated Legendre functions, together with the reality of
c, , t, and , we deriveĉ t̂

C(l 2 l9, w, w9)
i(ml2m9l9) m9 m5 e P (w9)P (w)O O n9 n

m,m9 n,n9

1
m9 m9 m mˆ3 3c (t) 2 c 4[t (t) 2 t̂ ]. (6)O n9 n9 n nn tt
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The overbar denotes complex conjugation. Equation (6)
can only be true if

1
m9 m9 m mˆ3c (t) 2 c 4[t (t) 2 t̂ ] ; d . (7)O n9 n9 n n mm9n tt

Similarly one can show that

1
m9 m9 m mˆ ˆ3c (t) 2 c 4[c (t) 2 c ] ; d , (8)O n9 n9 n n mm9n tt

1
m9 m9 m m3t (t) 2 t̂ 4[t (t) 2 t̂ ] ; d , (9)O n9 n9 n n mm9n tt

and

1
m9 m9 m mˆ3t (t) 2 t̂ 4[c (t) 2 c ] ; d . (10)O n9 n9 n n m,m9n tt

The scatter matrix of our system does not couple dif-
ferent zonal wavenumbers.

This has consequences for the EOFs we can extract
from our data. Let us line up for convenience all in-
dependent spectral coefficients (i.e., with nonnegative
zonal wavenumber) of both streamfunctions in a com-
plex state vector of our system. With M being the metric
of our state space and dF 5 F 2 the deviation ofF̂
the state vector F from its time mean, EOFs of this
turbulent part of the data are solutions of the eigenvalue
problem

2SMe 5 l e , (11)n n n

1
S 5 dF dF (12)O

n tt

is the scatter matrix. The eigenvalues are identical with
the variance associated with each pattern. From the
above we see that if forcing and boundary conditions
are zonally symmetric, and the metric does not couple
different zonal wavenumbers, then each EOF is com-
pletely contained in the subspace of one zonal wave-
number. The interested reader can easily convince him-
self that this result holds for arbitrary atmospheric mod-
els with zonal symmetry in all processes entering its
dynamic equations.

A dynamical interpretation of this property can be
given as follows. Given the zonal symmetry, it should
be expected that every EOF is translationally invariant
with respect to longitude in such a way that any lon-
gitudinal shift of the pattern can be completely achieved
by a change only in the degrees of freedom directly
associated with this pattern. Indeed, since for each EOF
en there is a single zonal wavenumber mn, starting from
a state vector that is proportional to this EOF, a shift in
longitude by a distance Dl is achieved by multiplying
its expansion coefficient by a phase factor, exp(imnDl).
No change in the expansion coefficients of any other
pattern is necessary.

We will now use our result for the derivation of some
general properties of the dynamic equations of low-or-

der models for our system. However, first let us intro-
duce some ordering among the patterns that will make
the dynamical structure of our low-order models more
transparent. From now on we will distinguish between
zonally symmetric patterns and pure wave patternszen

(mn . 0) with associated expansion coefficients zn
wen

and wn, respectively. The reality conditions for each
streamfunction yield

m 2mc 5 c (13)n n

m 2mt 5 t , (14)n n

so that both the zonally symmetric patterns and their
expansion coefficients are completely real. Avoiding
any nonlinearities that are of an order larger than 2, the
most general low-order model (including the closure)
for the system on the basis of leading EOFs, observing
the above reality condition, can now be written in two
types of tendency equations:

ż 5 A (z 2 Z ) 1 G (z 2 Z )(z 2 Z )O On nm m m nmr m m r r
m mr

1 B w w 1 (H w 1 H w )O Onmr m r nm m nm m
mr m

1 (I z w 1 I z w )O nmr m r nmr m r
mr

1 (J w w 1 J w w ) (15)O nmr m r nmr m r
mr

and

ẇ 5 C w 1 D z w 1 E w wO O On nm m nmr m r nmr m r
m m,r m,r

1 F w w 1 K wO Onmr m r nm m
m,r m

1 L z (z 2 Z ) 1 M z wO Onmr m r r nmr m r
m,r m,r

1 N w w . (16)O nmr m r
m,r

Here Zn denotes the expansion coefficients of the zonally
symmetric equilibrium configuration of the low-order
model, which is assumed to exist in analogy to the full
system. Since the full two-layer model does not contain
wave forcing, an analogous term is not included in (16)
either. A great simplification can be derived from the
observation that the dynamics must be invariant under
every longitudinal translation. Shifting the whole sys-
tem by a longitudinal distance Dl corresponds to mul-
tiplying each wn and its tendency in (15) and (16) by a
phase factor exp(imnDl). The coefficients of zonally
symmetric patterns remain unchanged as well as their
tendencies. Invariance of the dynamics implies that lhs
and rhs of both equations remain identical under the
translation. Since mn $ 0 this can, however, only be
ensured for every possible translation if only tensors A–
G are nonzero. Additionally they must fulfill the cou-
pling conditions
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B 5 0 if m ± m , (17)nmr m r

C 5 0 if m ± m , (18)nm n m

D 5 0 if m ± m , (19)nmr n r

E 5 0 if m ± m 1 m , (20)nmr n m r

and

F 5 0 if m ± m 2 m . (21)nmr n m r

An extension of this to low-order models with higher
nonlinearity and to systems other than the two-layer
model is straightforward. That only tensors A–G are
nonzero and that they must satisfy conditions (17)–(21)
will be used for a substantial reduction of the number
of free variables in the optimization problem, which is
at the heart of the identification of the best empirical
closure.

b. Low-order models conserving turbulent energy in
the nonlinear terms

Two results of the work by Selten (1993, 1995a,b),
Achatz et al. (1995), and Kwasniok (1996) seem to be
important for the closure problem:

R Purely projected and truncated models (i.e., models
without parameterization of the feedback from unre-
solved modes) seem to be always stable in the sense
that no explosive unbounded growth of energy has
been observed in such models.

R Allowing the tensor describing the linear dynamics of
a reduced model to be different from the projected
one in order to account for the aforementioned feed-
back does not destroy stability.

It therefore seems to be especially important that the non-
linear terms of a low-order model are constructed such
that they do not violate the conservation of some type
of energy. Actually, with a total energy metric, this is
just the case for any projected and truncated EOF model
of our two-layer system. Total energy, that is, the sum
of kinetic and available potential energy, is defined by

2n(n 1 1) n(n 1 1) 1 r
0 2 0 2E 5 (c ) 1 (t )Otot n n[ ]2 2n

m 21 {n(n 1 1)|c |O n
m.0,n

2 m 21 [n(n 1 1) 1 r ]|t | }. (22)n

Therefore the appropriate metric is Mij 5 M̃idi j with

n(n 1 1)
0if F 5 ci n2

2n(n 1 1) 1 r
0if F 5 t˜ i nM 5 (23)i 2
mn(n 1 1) if F 5 c , m . 05 i n

2 mn(n 1 1) 1 r if F 5 t , m . 0.i n

If the two-layer model tendency equations in state space
are written as

5 T(F),Ḟ (24)

the equations of the projected (nonclosed) EOF model
are given by

z ˜ż 5 e M T (F ) (25)On in i i tr
i

and
w ˜ẇ 5 e M T (F ), (26)On in i i tr

i

where the truncated state vector is
ˆ z wF 5 F 1 z e 1 w e . (27)O Otr n n n n

n n

Equations (25)–(27) yield, together with (1) and (2),
pr prż 5 A (z 2 Z ) 1 B w w (28)O On nm m m nmr m r

m m,r

and
pr prẇ 5 C w 1 D z wO On nm m nmr m r

m m,r

pr pr1 E w w 1 F w w . (29)O Onmr m r nmr m r
m,r m,r

Here Z denotes the projected zonally symmetric equi-
librium configuration of the two-layer model. The in-
teraction tensors Apr, Bpr, Cpr, Dpr, Epr, and Fpr together
with some details of the derivation can be found in the
appendix.

A quantity possibly conserved in the adiabatic limit
of this model is turbulent energy, that is,

E 5 dF M dFOturb i ij j
i, j

2 25 z 1 |w | . (30)O On n
n n

The conditions for conservation, that is, Ėturb 5 0, can
be derived from (28) and (29) to be

pr prA 5 2A , (31)mn nm

prA Z 5 0, (32)O nm m
m

pr prC 5 2C , (33)mn nm

pr pr pr2B 1 D 1 D 5 0, (34)nmr rmn mrn

and
pr pr pr prE 1 E 1 F 1 F 5 0. (35)nmr nrm mnr rnm

In checking the validity of these conditions let us first
look at the adiabatic case with zero time-averaged state.
There (A17) shows that Apr vanishes so that (31) and
(32) are fulfilled. From (A19) we see that Cpr assumes
the anti-Hermetian character as required by (33). Using
the antisymmetry of the Jacobian operator and that for
any three functions, f, g, and h, fJ(g, h) 1 gJ(f, h) 5
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J(fg, h) and fJ(g, h) 1 hJ(g, f) 5 J(g, fh), one can
convince oneself from (A18) and (A20)–(A22) that (34)
and (35) also hold. In the diabatic case and/or if the
general time mean state does not vanish, the linear ten-
sors no longer satisfy the required conditions. None-
theless (34) and (35) hold even then so that the nonlinear
terms do not affect the energy balance irrespective of
whether we are in an adiabatic or diabatic situation or
whether the time mean vanishes or not. This is the main
reason why, as will be shown later, the projected model
is stable in the sense that its turbulent energy always
keeps within certain limits.

It can be expected that a closed model that follows
the energetic behavior of the projected (nonclosed) ver-
sion faithfully will also exhibit this stability. Let the
closed model be given by the most general quadratic
model admitted by zonally symmetric boundary con-
ditions and forcing, that is, by the tendency equations
(15) and (16) with only tensors A–G being nonzero and
fulfilling the coupling conditions (17)–(21). If we now
demand that the energy balance is the same as in the
projected model, that is, that Ėturb 5 Ėturbzpr where Ėturbzpr

is the turbulent energy’s time derivative as given in the
projected model, we find as conditions for the closure
corrections, denoted by 5 T... 2 for any of thecl prT T... ...

tensors A–F,
cl clA 5 2A , (36)mn nm

clA Z 5 0, (37)O nm m
m

cl clC 5 2C , (38)mn nm

G Z Z 5 0, (39)O nmr m r
m,r

(G 1 G 1 G 1 G )Z 5 0, (40)O nmr mnr nrm mrn r
r

G 5 0, (41)O nmr
permn,m,r

cl cl cl2B 1 D 1 D 5 0, (42)nmr rmn mrn

and
cl cl cl clE 1 E 1 F 1 F 5 0. (43)nmr nrm mnr rnm

Among the above conditions, (39)–(43) are most im-
portant since they prevent all nonlinear terms—con-
sisting of closure contributions and those obtained from
the projection—from leading to catastrophic growth in
turbulent energy. All conditions together ensure that ex-
plosive energy growth cannot occur if this is not ob-
served in the nonclosed, purely projected, and truncated
model either.

c. Simulation of multiple baroclinic wave life cycles
by closed EOF models

Following our statistical–empirical ansatz we have
examined how well-reduced EOF models perform using
an optimal closure parameterization extracted directly

from the data produced by our two-layer model (and as
described in section 2b). This has been done in reduc-
tions consisting of finding the minimum of a squared
error sum between the tendencies of the full two-layer
model, projected onto the explicitly considered EOFs,
and the closed model’s tendencies, that is,

cl cl cl cl« (A , G, C , D , F )t

1
pr 2 pr 25 (ż 2 ż ) 1 |ẇ 2 ẇ | , (44)O O On n n n[ ]s t n nt

where

2pr pr 2s 5 ż 1 |ẇ | , (45)O O Ot n n[ ]t n n

pr z ˜ż 5 e M T (F ), (46)On in i i tr
i

and
pr w ˜ẇ 5 e M T (F ). (47)On in i i tr

i

In order to avoid the discussed stability problems with
respect to unbounded energy growth constraints (36)–
(43) have been applied in two different minimizations
by varying degrees of completeness. In both reduction
approaches the nonlinear terms have been forced to sat-
isfy (39)–(43). For reasons of simplicity we have set

Gnmr 5 0, (48)

which keeps the structure of advective terms as it is in
the full-scale model.

The difference in the two approaches (described be-
low), which lies in the stringency of the application of
constraints to linear closure terms, has been motivated
by the following consideration. It has been shown by
Kwasniok (1996) and Selten (1995a,b) that model re-
ductions by PIPs or EOFs might be improved in quality
by appropriately adjusting the linear tensor of their mod-
els. None of the two authors has applied any constraints
like (36)–(38). Nevertheless, energy did not grow with-
out bounds in any of the cases considered by them.
Therefore it might indeed be a good way just to connect
the nonlinear terms to constraints and let the linear terms
be free variables of the optimization problem. On the
other hand, at least for a comparison, it might be good
to look in addition at optimized models in which also
the linear closure terms do not change the turbulent
energy balance. This is also attractive because in the
latter approach a closer link of the reduced to the known
true dynamics is ensured by keeping the influence of all
diabatic effects as it can be determined by pure projec-
tion. We have thus performed at given numbers of lead-
ing EOFs optimizations of two types. In the first opti-
mization, henceforth called LC, the linear terms are for-
bidden to violate the turbulent energy balance. This has
been done by setting

5 0clAnm (49)
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FIG. 2. Relative variance associated with the 20 leading EOFs of
days 2001–4000 in the analyzed time series, together with the zonal
wavenumber associated with each pattern.

and calculating all with m , n via (38) from .cl clC Cnm mn

The more general conditions (36) and (37) have been
found to lead to only negligible differences in the re-
sulting closure. Because they potentially destroy the
symmetry of the projected linear tensor for the zonally
symmetric EOFs, they have therefore not been used in
their general form any further. The free variables of the
optimization are then all with m $ n, andcl clC Dnm nmr

. In the second optimization, called LU, no con-clFnmr

straints have been applied to linear closure terms. Op-
timization variables are there all , , , andcl cl clA C Dnm nm nmr

.clFnmr

Since all constraints are linear, in the practical opti-
mization one has to solve a linear regression problem
that can be done by standard methods. Because it was
at hand and had to be used in the PIP context (discussed
below) anyway, we have used a nonlinear sequential
quadratic programming algorithm as available in the
NAG library (Ford and Pool 1984). The minimization
has always been initialized with vanishing closure cor-
rections. Coupling conditions (17)–(21) hold for the pro-
jected tensors and thus must do so also for the closure
corrections. This helps to reduce the number of free
variables substantially. In order to give the reader some
impression of the magnitude of the problem, we offer
the following. In the case of an LC optimization of an
EOF model based on 15 EOFs, that is, seven zonally
symmetric patterns and eight in wave space (as usual,
the variance criterion has been chosen to decide which
patterns are to be picked as the leading ones), the num-
ber of free real variables in the minimization (imaginary
and real parts are counted separately) is 744, instead of
1984 without the coupling conditions.

Only a subset of the whole time series has been used
for the actual reduction. This is the time span between
days 2001 and 4000. For every day one data point in
state space has been considered. A test for the statistical
sufficiency of the analyzed dataset has been performed
by recalculating «t after the minimization, using the pre-
viously determined EOFs and model coefficients (from
days 2001 to 4000), but for days 4001 to 6000. Virtually
no difference could be seen between the two thus cal-
culated «t. This means that, at least with respect to local
tendencies, a reduced model determined from the first
subset of data is as well able to simulate the second
one. We therefore consider the analyzed subset statis-
tically sufficient enough so that relevant sampling errors
are avoided.

The relative variance spectrum for the first 20 EOFs
determined from this subset is shown in Fig. 2. The
decay in variance with growing EOF index is rather
steep. The dominating EOF, a pattern with zonal wave-
number m 5 6 is very similar to the normal mode that
had been used for the initialization of the time series.
In spite of their small variance contribution, however,
it will be seen in the following that quite a few of the
following patterns are indeed needed for a realistic sim-
ulation of the time series with all its major character-

istics. The spatial structure of the three leading zonally
symmetric and wave EOFs, respectively, is shown in
Figs. 3–5.

For the predictive behavior of a reduced model on
shorter timescales (in our case Dt # 60 d), the relative
tendency error «t itself is a measure since it quantifies
the local similarity between projected tendencies and
tendencies in the reduced model. Figure 6 contains this
number for all reductions on the basis of up to 13 leading
EOFs. The relative tendency variance error of the cor-
responding purely projected and truncated (nonclosed)
model is also given. Especially at larger numbers of
considered EOFs the improvement in local accuracy by
the closure in comparison to the nonclosed model is
quite substantial. About an order of magnitude can be
gained. Generally, models that do not conserve turbulent
energy in the linear closure terms have smaller local
errors. This is natural since the number of minimization
variables is larger than in the energy conserving case.
More light can be shed on the short time predictive
qualities of the resulting model by performing standard
prediction tests. As an example we show the case of 11
EOFs, that is, four zonally symmetric patterns and seven
in wave space. Two thousand integrations have been
performed over 100 days, starting from day 4001 up to
6000. From this set of predictions a mean anomaly cor-
relation,

Re a | (Dt)a | (Dt)O n pred n pr
nc (Dt) 5 , (50)a K L2 2|a | (Dt)| |a | (Dt)|O On pred n pr! !n n

and a root-mean-squared error of the prediction,

2|a | (Dt) 2 a | (Dt)|O7 8n pred n pr
n

« 5 , (51)pred

2! |a | (Dt)|O7 8n pr
n
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FIG. 3. Spatial structure of the three leading zonally symmetric
EOFs of days 2001–4000 in the analyzed time series. Units are ar-
bitrary.

FIG. 4. Lower-layer streamfunction of the three leading wave EOFs
of days 2001–4000 in the analyzed time series. Dashed lines indicate
negative values, solid lines positive ones. Contour intervals are con-
stant but in arbitrary units.

have been calculated. Here anzpred(Dt) is the expansion
coefficient of the nth EOF (both for zonally symmetric
or wave patterns) as predicted by the reduced model for
time Dt after beginning the integration, and anzpr(Dt) is
the corresponding coefficient as determined by projec-
tion on the respective data point of the full dataset.
Angle brackets denote averaging over all predictions.
Figure 7 shows the results. Persistence corresponds to
anzpred(Dt) 5 anzpr(0). As expected from the relative local
tendency error, all closed models perform much better
than the projected (nonclosed) model. The model from
the LU optimization has best predictive capability. As
also diagnosed by Selten (1995b), due to the best fit of
local tendencies, closed models are indeed able to give
rather good short-term predictions. An interesting aspect
is that the full two-layer model, integrated from trun-
cated initial conditions obtained by projection onto the
leading EOFs, performs worse for shorter prediction
periods. This results from missing the effect of unre-

solved modes in the beginning of the integration by
using truncated initial conditions.

For an estimate of the capability of the EOF models
to simulate the longtime behavior of the full system, we
have projected for each model both day 2001 and 4001
of the data onto the respective EOFs and integrated from
there over 2000 days. Various time and zonal means of
the simulation have then been compared to the corre-
sponding quantities of the full dataset. Additionally, the
time dependence of all four energy types has been
looked at in order to check whether the reduced model
is able to simulate the prominent modulation of energy
in the original data. This additional check of the actual
time development of the system, not possible so easily
for more irregular datasets like, for example, that pro-
duced by the much-studied barotropic model with zo-
nally dependent forcing and orography, must be seen as
an especially stringent test. As will be seen below, cor-
rect simulation of the modulation necessitates signifi-
cantly more patterns than just faithful reproduction of
first and second moments of the full system.

As one major result it has been observed that all
integrations are stable in the sense that the energy never
grew without bounds. This is not due to some special
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FIG. 5. Same as Fig. 4 but for the upper layer. Contour intervals
are as in Fig. 4.

FIG. 7. Mean anomaly correlation and relative root-mean-squared
error of the various EOF models (LU denotes a model in which linear
closure terms do not observe energy conservation constraints, where-
as in the LC model they do) including the purely projected (i.e.,
nonclosed) version (P) and a persistence assumption (pers.) for 11
EOFs. Here 2L (tric) denotes the corresponding result obtained by
integrating the full two-layer model from truncated initial conditions
obtained by projection onto the 11 leading EOFs.

FIG. 6. Relative tendency variance error of the two considered
closed models for up to 13 leading EOFs. Here LU denotes a model
in which linear closure terms do not observe energy conservation
constraints, whereas in the LC model they do. The errors of the cor-
responding purely projected (i.e., nonclosed) model (P) are also given.

properties of our data, as could be argued from the dif-
ference of our dataset from the one analyzed by Selten
(1995b), but to turbulent energy conservation in the
nonlinear closure terms. Without energy conserving
constraints on the interaction tensors we find closed
models with the same runaway effects as discussed ear-
lier.

Additionally, however, we find that the complete free-
dom in fitting the linear tensors as is allowed in models
with projected nonlinear interaction tensors no longer
exists. Model LU exhibits enormous problems in the
way that, for most integrations, wave amplitudes es-
pecially are generally much too large. Therefore, it
seems that turbulent energy conservation by linear clo-
sure terms not only ensures a more realistic link to the
known diabatic dynamics of the full system but is also
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FIG. 8. Time and zonal means of the zonal wind in both layers and
of the meridional potential temperature gradient, as obtained by an
LC model (in which all closure terms observe energy conservation
constraints) on the basis of 17 EOFs, integrated from day 4001 to
day 6000, in comparison with the corresponding values in the two-
layer model data and with the results of the projected (i.e., nonclosed)
model (P).

essential for ensuring well-behaved simulations with
wave amplitudes within realistic limits.

In an evaluation of the specific qualities of the LC
closure with respect to longtime simulations we first
observe that in nearly all of simulations performed a
substantial improvement was found by using the closed
instead of the projected (nonclosed) model. There is also
a clear tendency for the simulations to be improved by
increasing the number of patterns. Generally it must also
be said that this cannot be set equal to a statement that
increasing this number by one also leads to improve-
ment. There are opposite cases. As an example, 16 EOFs
perform worse than 15 and 17 (especially concerning
faithful reproduction of the longtime modulation). Such
occurrences are not as surprising as one might think
immediately. The relative tendency variance error does
decrease as the number of patterns is increased from 15
to 16 and then 17, and as a consequence the short-term
predictive capability also increases. Nonetheless, al-
though good longtime simulations might be hoped to
be achieved by models with good short-time predictive
capabilities (and mostly this is the case), this is by no
means always to be expected. Rather, as a consequence,
the strategy to be taken here is to find a lowest number
of patterns simulating one or several aspects of the orig-
inal data well without drawing from this the conclusion
that, with the patterns performing so well there, these
will also guarantee good performance of every LC mod-
el containing them. Keeping this in mind, we can sum-
marize our findings about the quality of LC simulations
in the following way. Among the cases considered (the
number of EOFs was always larger than 10), the lowest
number of patterns to yield good time and zonal mean
zonal wind and meridional potential temperature gra-
dient distributions in both simulations is 11 (4 zonally
symmetric patterns, 7 in wave space). The same holds
for the zonal-mean Eliassen–Palm flux (EPF) diver-
gences. In order to find some clear longtime energy
modulation in the simulations, we need at least 13 pat-
terns (5 zonally symmetric, 8 in wave space). For a
quantitatively good simulation of the period of the mod-
ulation, 17 patterns are needed (7 zonally symmetric,
10 in wave space). For this case Fig. 8 shows the re-
sulting zonal-mean zonal wind in both layers and zonal-
mean meridional potential temperature gradient, aver-
aged over day 4001–6000. In Fig. 9, for the same in-
tegration, time and zonal mean of the EPF divergence
in both layers are given. Comparison with the same
quantities as determined from the original data reveals
good agreement. As for the longtime modulation, the
reader can conclude from the time dependence of the
four energies in the simulations by the projected model
(Fig. 10) and by the LC model (Fig. 11) that the char-
acteristic oscillation in the latter case matches the one
in Fig. 1 rather well—especially much better than in the
former case.

4. Reduction by PIPs

In spite of their strengths closed EOF models are not
necessarily the ultimate tool for reducing complex dy-
namical systems. As has been shown by Kwasniok
(1996), models based on principal interaction patterns
yield further improvement in comparison to empirical
orthogonal functions in the reduction of a barotropic
model by projected (nonclosed) and linearly closed
models. This refers both to short-time predictions and
to long-time climate simulations. The question therefore
arises immediately whether in the case of nonlinearly
closed models discussed here PIPs do not exhibit the
same advantages. In an attempt to answer to this, PIP
analyses of our multiple baroclinic wave life cycles have
also been performed. We will approach the topic in this
section in the following way. First, we will give a short
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FIG. 9. Same as Fig. 6 but for the Eliassen–Palm flux (EPF) diver-
gence in both layers.

FIG. 10. Time dependence of all Lorenzian energies in a simulation
by a projected (i.e., nonclosed) model based on 17 EOFs. Normal-
ization constant is 9.042 3 1022 J.

overview about PIPs in general. Then we will specify
the PIP model used. Finally, we will summarize the PIP
optimizations we have done and discuss the results.

a. Principal interaction patterns in general

The term, principal interaction patterns, is somewhat
misleading since what is really looked for in a PIP anal-
ysis is an optimal subspace of the full state space for
representing the dynamics of the system on the basis of
as few degrees of freedom as possible. Within this sub-
space gauge invariance of the model with respect to
changes of the basis patterns exists (Kwasniok 1996);
that is, as long as two sets of basis patterns span the
same space the corresponding dynamical equations—
obtainable from each other by application of standard
transformation procedures—are equivalent in the sense
that integrating them with the same initial condition
results in completely identical system trajectories. PIP
analysis is a generalization of the optimization proce-

dure described in the previous sections for EOFs in that
now not only the interaction coefficients but also the
reduced subspace used for the projection is an object of
the optimization. There are several possibilities for de-
fining a suitable objective function to be minimized. In
accordance with the approach taken by Kwasniok
(1996), we choose for it

1
PIP PIP pr PIP pr˙ ˙ ˜ ˙ ˙« 5 dF 2 dF M (dF 2 dF ),O O 1 2t i i i i iPIPs t it

(52)
with

PIP pr pr˙ ˜ ˙s 5 dF M dF . (53)O Ot i i i
t i

Here is the tendency of the deviation of the statepr˙dF
vector from the time mean, projected onto the PIP sub-
space and is the PIP model result for the latter.PIP˙dF
This approach ensures best agreement between the full
and reduced model in the very subspace spanned by the
PIPs. More details will be given below. In general, the
advantage of the PIP method could be that it is not so
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FIG. 11. Same as Fig. 8 but for the LC model (a nonlinearly closed
model in which all closure terms observe energy conservation con-
straints).

much variance oriented as an EOF projection but more
intended to reproduce the actual dynamics faithfully.

b. A PIP model

What is now the PIP model we can use in our context?
First of all, zonal symmetry of forcing and boundary
conditions can help us once more in excluding a large
set of possibilities. It has been pointed out in the pre-
vious section that EOFs reproduce this symmetry in that
just by using their own degrees of freedom they can be
shifted arbitrarily in longitude. This is only possible
because each EOF has only one zonal wavenumber so
that multiplication of its expansion coefficient with a
phase factor produces this shift. There is no reason to
assume PIPs to be different from EOFs with this respect.
We therefore demand that there is a set of basis vectors
of PIP subspace with the property that each has only
one zonal wavenumber. In fact, the EOF basis of PIP
subspace can be shown to do this in the same manner
as described above. In complete analogy to the EOF
case, we can therefore write for the PIP expansion of
the deviation of the state vector from its time mean

pr z wdF 5 z̃ p 1 w̃ p . (54)O On n n n
n n

Here is a zonally symmetric basis vector (zonallyzpn

symmetric PIP), a basis vector with a zonal wave-wpn

number mn . 0 (wave PIP); z̃n and w̃n are the corre-
sponding expansion coefficients. If we assume for the
PIP model tendencies of the latter a quadratic form,
symmetry considerations lead us to Eqs. (15) and (16)
with only tensors A–G being nonzero and fulfilling the
coupling conditions (17)–(21). It is understood that the
EOF expansion coefficients have to be replaced by their
PIP counterparts.

Also the closure of our PIP model can be found in
close analogy to the EOF case. Based on the gauge
invariance demonstrated by Kwasniok (1996), we as-
sume from now on that, without loss of generality, all
PIPs are orthonormal, that is,

z z˜p M p 5 d , (55)O in i im nm
n

w w˜p M p 5 d , (56)O in i im nm
n

and

z w w z˜ ˜p M p 5 p M p 5 0. (57)O Oin i im in i im
n n

Projecting the two-layer model onto the patterns, we
once more arrive at (28) and (29). As before, the non-
linear terms of this projected model conserve turbulent
energy. Turbulent energy conservation in the nonlin-
early closed case is generally ensured by the constraints
(36)–(43). Drawing from the experience gathered with
EOF models we will in the following use as the PIP
model the analogue of the LC model; that is, we will
use (38), (42), (43), (49) (i.e., 5 0), and (48) (Gnmr

clAnm

5 0) as constraints on the closure.

c. The reductions and their results

In the practical optimization we assumed that the PIP
subspace is contained within a suitably large subspace
of leading EOFs. This reduces computation time con-
siderably without loss of precision. The PIP expansions
in terms of the EOFs considered are

z z zp 5 p e (58)On mn m
m

and
w w wp 5 p e , (59)On mn m

m

where for each EOF the associated expansion coefficient
is only nonzero if its zonal wavenumber agrees with
that of the PIP. The objective function of the minimi-
zation is then
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FIG. 12. In dependence of the number of determined PIPs, the
relative tendency variance error, for the nonlinearly closed PIPPIP«t

model (nlc) as determined from days 2001–4000, recalculated for the
latter time span (1), and days 4001–6000 (2). Also given for the same
number of EOFs is the corresponding error «t of the purely projected
(i.e., nonclosed) (P) and the best closed (LC, i.e., all closure terms
observe energy conservation constraints) EOF model and a linearly
closed PIP model without conservation constraints (lc), all for days
2001–4000.

PIP z w cl cl cl« [p , p , C (m $ n), D F ]t mn mn nm

1
pr 2 pr 2˙ ˙ ˙ ˙5 (z̃ 2 z̃ ) 1 |w̃ 2 w̃ | . (60)O O On n n nPIP [ ]s t n nt

with

PIP pr 2 pr 2˙ ˙s 5 (z̃ ) 1 |w̃ | , (61)O O Ot n n[ ]t n n

pr z pr˙̃z 5 p ż , (62)On mn m
m

and

pr w pr˙̃w 5 p ẇ . (63)On mn m
m

Equations (55)–(57) are the associated constraints. For
comparison with previous work, we have also deter-
mined a linearly closed PIP model without conservation
constraints. There optimization variables are all ,zpmn

, , and , while all nonlinear closure coefficientsw cl clp A Cmn nm nm

are zero.
The optimization problem is a truly nonlinear one,

with a rather large number of free variables (e.g., count-
ing real and imaginary parts separately, for 15 patterns,
in addition to 744 real closure coefficients, 437 PIP
expansion coefficients have to be determined if a basis
of 60 EOFs is chosen for the subspace containing all
PIPs). For its solution the same sequential quadratic
programming algorithm has been used as in the EOF
case. For each number of PIPs the minimization has
been initialized with patterns being identical to the same
number of leading EOFs and the closure corrections of
the corresponding LC model. Since discontinuous jumps
are not allowed in the optimization, the number of PIPs
at each zonal wavenumber is thereby fixed from the very
beginning. It cannot be excluded that playing with this
number could further improve our results. For the pres-
ent we have abstained from such an analysis.

The best choice of the number of underlying EOFs
has been determined by performing a reduction of the
system to a nonlinearly closed model for 10 PIPs with
20, 40, and 80 EOFs. The analyzed dataset is the same
as used in the determination of the closed EOF models.
It comprises days 2001 to 4000, data taken once every
day. The resulting relative tendency variance errors are
5.336 3 1025, 1.963 3 1025, and 1.882 3 1025, re-
spectively. From this we conclude that four times the
number of PIPs seems to be a good dimension of the
considered EOF subspace. This has been adopted for
all analyses described here.

As in the EOF case the statistical sufficiency of the
analyzed dataset has been tested by recalculating the
relative tendency variance error as defined in (52), after
the minimization, using the patterns and model coeffi-
cients obtained for days 4001 to 6000. The result is
shown in Fig. 12. No relevant difference between the
two datasets can be observed so that for the PIP analysis

also the analyzed dataset seems to be sufficiently large
from a statistical point of view.

As for an evaluation of the results, a comparison with
the relative tendency errors of the best EOF model (LC)
for same number of patterns (also Fig. 12) indicates that
by using a PIP analysis with a nonlinear closure much
can be gained with respect to local predictive capabil-
ities of the reduced model. The relative tendency vari-
ance error is in all cases examined about an order of
magnitude smaller than in the case of EOF models with
a nonlinear closure and of linearly closed PIP models.
This is further borne out by the same prediction tests
as those described for the EOF case. Once again we
have calculated for the two 11-PIP models a mean
anomaly correlation and a root-mean-squared prediction
error as defined by (50) and (51). Here EOF expansion
coefficients must be substituted by their PIP counter-
parts. Two thousand integrations over 100 days have
been taken into account, starting from day 4001 up to
6000. Figure 13 shows the results, together with cor-
responding values for projected and best closed EOF
model (LC) and for a persistence assumption for the
PIPs. The advantage of the nonlinearly closed PIP model



2466 VOLUME 54J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S

FIG. 13. Mean anomaly correlation and relative root-mean-square
error of the purely projected and truncated (i.e., nonclosed) EOF
model (P), the best closed EOF model (LC, i.e., all closure terms
observe energy conservation constraints), the linearly (lc) and non-
linearly (nlc) closed PIP model, and a persistence assumption for
EOFs, for 11 patterns.

FIG. 14. Spatial structure of the three leading zonally symmetric
PIPs of days 2001–4000 in the analyzed time series. Units are ar-
bitrary.

over all EOF models is quite obvious. On the other hand,
the linearly closed PIP model lies in predictive capa-
bility somewhere between projected EOF model and
nonlinearly closed EOF model. This is not in contra-
diction to the determined relative tendency errors shown
above, since a closer inspection of the first few days of
Fig. 13 shows that the linearly closed PIP model per-
forms slightly better than the nonlinearly closed EOF
model for the first 4 days. Thereafter, however, it quickly
falls behind the EOF model. Thus, it seems to be indeed
the nonlinear closure scheme in combination with the

optimization of the reduced subspace that gives the non-
linearly closed PIP model its advantage. The same can
be stated for all other numbers of patterns examined so
that nonlinearly closed PIP models seem to be the best
alternative for a reduced model with strong short-term
predictive capabilities.

Similar statements can be made about longtime cli-
mate simulations, however with a caveat. Because a PIP
analysis is not variance oriented like EOF analysis, the
identified PIP subspace can describe only part of the
full variance of the system. For example, 15 PIPs ex-
plain only 86.45% of the variance, whereas for 15 EOFs
the corresponding number is 99.81%. The different spa-
tial structures of PIPs that lead to this effect can be
observed for the first three zonally symmetric and wave
patterns, respectively, from the 15-PIP optimization in
Figs. 14–16. The basis patterns have been made unique
by choosing them to be the eigenvectors of the scatter
matrix for days 2001–4000 in PIP space (i.e., EOFs in
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FIG. 15. Lower-layer streamfunction of the three leading wave PIPs
of days 2001–4000 in the analyzed time series. Dashed lines indicate
negative values, solid lines positive ones. Contour intervals are con-
stant but in arbitrary units.

FIG. 16. Same as Fig. 15 but for the upper layer. Contour intervals
are as in Fig. 15.

PIP space; they have as a consequence also been ordered
with respect to the variance in PIP space thus being
found to be associated with them). Therefore, one either
should compare PIP integrations with the behavior of
the full system’s projection onto PIP subspace or use
some additional tool for parameterizing the error be-
tween full system and PIP subspace as a function of PIP
coefficients. Such a ‘‘downscaling’’ scheme can be
readily formulated. If

EOF z wdF 5 z e 1 w eO On n n n
n n

is the expansion of the deviation of the state vector from
the time mean in all EOFs taken into account in the PIP
reduction, what is needed is a function S(z̃n, w̃n) such
that, at good accuracy,

dFEOF 5 dFpr 1 S. (64)

If and are expansion coefficients of this functionz wS Sn n

for zonally symmetric and wave EOFs, respectively, this
is equivalent to

z zS 5 z 2 z̃ p (65)On n m nm
m

and
w wS 5 w 2 w̃ p . (66)On n m nm

m

As additional properties, we require that the error mod-
eling scheme does not violate translational invariance
with respect to longitude (because of the zonal sym-
metry in the whole system) and that the zonally sym-
metric equilibrium state with error modeling is the same
as without. All of these conditions are fulfilled by the
rather general functions

z ˜S 5 a (z̃ 2 Z ) 1 b w̃ w̃ (67)O On nm m m nmr m r
m m,r

and

wS 5 g w̃ 1 d z̃ w̃O On nm m nmr m r
m m,r (68)

1 « w̃ w̃ 1 z w̃ w̃ ,O Onmr m r nmr m r
m,r m,r

where
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FIG. 17. Time and zonal means of the zonal wind in both layers
and of the meridional potential temperature gradient, as obtained by
a nonlinearly closed PIP model with 11 PIPs with error modeling,
integrated from day 4001 to day 6000, in comparison with the cor-
responding values in the two-layer model data, the nonclosed, that
is, purely projected (P), and the closed (LC) EOF model (in which
all closure terms observe energy conservation constraints) with the
same number of patterns. The PIP result is virtually identical to the
corresponding values in the original two-layer model data.

FIG. 18. Same as Fig. 12 but for the Eliassen–Palm Flux (EPF)
divergencies in both layers. PIP results are given both with (e) and
without error modeling (ne). The PIP result (with error model) is
virtually identical to the corresponding values in the original two-
layer model data.

b 5 0 if m ± m , (69)nmr m r

g 5 0 if m ± m , (70)nm n m

d 5 0 if m ± m , (71)nmr n r

« 5 0 if m ± m 1 m , (72)nmr n m r

and

z 5 0 if m ± m 2 m . (73)nmr n m r

For each number of PIPs the tensors a, b, g, d, «, and
z (e.g., counting real and imaginary parts separately,
4507 coefficients for the case of 15 PIPs and 60 un-

derlying EOFs) have been determined, from (65)–(73)
and the dataset used for the PIP analysis, by linear re-
gression.

For the case of 11 patterns Fig. 17 shows the zonal-
mean zonal wind in both layers and the zonal-mean
meridional potential temperature gradient, averaged
over day 4001–6000, as obtained by integrations of the
projected (nonclosed) EOF model, a closed EOF model
(LC), and the nonlinearly closed PIP model with error
modeling, in comparison to the same values in the orig-
inal data. Figure 18 shows the corresponding time and
zonal-mean EPF divergences. Here the PIP result is giv-
en both with and without error modeling. While the
closed EOF model can simulate all climatological means
considered rather accurately, the PIP model yields near-
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FIG. 19. Matrix of absolute values of the coefficients of the cor-
relation matrix between expansion coefficients of the leading 15
EOFs, calculated from the result of an integration of the nonlinearly
closed EOF model with 15 patterns, in which all closure terms observe
energy conservation constraints (LC), from day 4001 to day 6000.
Contours are at 0.1, 0.2, . . . , 1.0.

FIG. 21. Power spectrum of eddy kinetic energy in simulations by
the closed EOF model in which all closure terms observe energy
conservation constraints (LC) for 11 and 13–15 patterns (solid line)
in comparison to the original data (dotted). The simulation time is
from day 4001 to day 14 000. The brackets indicate how many of
the considered EOFs are wave patterns and how many are zonally
symmetric

FIG. 20. Same as Fig. 19 but calculated from the result of an
integration of the nonlinearly closed PIP model with 15 patterns.
Contours are at 0.1, 0.2, . . . , 1.0.

ly perfect agreement with the full system if error mod-
eling is applied. This advantage of the nonlinearly
closed PIP model in simulating time and zonal means
has been observed in all other cases besides the one
with 14 patterns. Here PIPs and EOFs perform about
equally well. A more general impression than from the

EPF divergences in the second-moment simulation ca-
pabilities of the two respective models is given, for the
case of 15 patterns, in Figs. 19 and 20. There the ma-
trices of absolute values of relative correlation coeffi-
cients between expansion coefficients of the leading 15
EOFs from simulations by the two respective models—
nonlinearly closed EOF (LC) and PIP model—are
shown. The covariance structure of the original time
series, that is, a diagonal correlation matrix, is better
reproduced by the PIP model. Long-time simulation re-
sults for the linearly closed PIP model are not shown
since it turned out to perform systematically worse than
the nonlinearly closed EOF model. For 10–13 patterns
the projected EOF model yields better agreement with
the data.

As for simulations of the longtime behavior of energy
reader can conclude from the power spectrum of eddy
kinetic energy in simulations by the closed EOF model
(LC) and by the nonlinearly closed PIP model from day
4001 up to 14 000, for 11 and 13–15 patterns, in Figs.
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FIG. 22. Same as Fig. 21 but for the nonlinearly closed PIP model
with error modeling.

FIG. 23. Same as Figs. 10 and 11 but for a nonlinearly closed PIP
model with error modeling, with 15 PIPs.

21 and 22, that in all cases PIPs are better able to sim-
ulate the full system. In the two other cases considered
(10 and 12 patterns) neither model is able to reproduce
the energy behavior at any acceptable quality. In all
cases shown the characteristic double peak at lower pe-
riods (between 20 and 30 days) due to the life cycles
is mimicked much better by PIPs than by EOFs. A prob-
lem inherent in both reductions is however also visible:
both lead to simulations with some kind of longtime
modulation. Unfortunately, the corresponding timescale
is too short in the EOF case and too long for PIPs.
Nonetheless, the difference is smaller in PIP simula-
tions. This can also be observed directly in the time-
dependent energies as given in Fig. 23 for the case of
15 PIPs. The modulation decay phase especially is better
reproduced by this model than even by the above-dis-
cussed 17-EOF (LC) model (see Fig. 11).

5. Summary and conclusions

So far, purely projected and truncated models (with-
out parameterization of the feedback from unresolved
modes) on the basis of EOFs or PIPs had been dem-
onstrated to have some potential for reductions of stan-

dard models of atmospheric behavior. A problem that
had not yet been well solved is the related closure prob-
lem, that is, how the influence of patterns not explicitly
resolved in the reduced model could be parameterized
as a function of explicitly considered patterns. Thus, in
reduced models described in the literature the number
of degrees of freedom is still much higher than theo-
retically necessary. Nonetheless, first steps toward an
improvement of this situation have been taken. In their
analyses of the potentials of EOF and PIP models Selten
(1995a) and Kwasniok (1996) were successful in in-
cluding empirical linear closure schemes. An important
attempt at using a nonlinear closure was made by Selten
(1995b). However, in spite of progress with respect to
local prediction, longtime integrations of his quadrati-
cally closed EOF model are not possible because of
unbounded explosive growth of energy in the model
after some short integration time. As a way out of this
dilemma he proposed, among two possibilities, to im-
pose some kind of energy conservation constraints on
the closure parameters, which are themselves deter-
mined empirically from the full system examined. We
have followed this suggestion and thereby have been
able to make substantial progress.



15 OCTOBER 1997 2471A C H A T Z A N D S C H M I T Z

The time series analyzed for a test of the formulated
closure approach describes multiple baroclinic wave life
cycles at zonal wavenumber 6 and all higher harmonics
in a quasigeostrophic two-layer model on the sphere
with surface friction and Newtonian cooling, integrated
at horizontal resolution T42. The choice of this time
series was motivated by the general importance of bar-
oclinic wave life cycles and by the quasiperiodic char-
acter of the phenomenon, which yields rather clear cri-
teria about what aspects of the time series a reduced
model should be able to simulate. Additionally, sam-
pling problems can already be excluded at a modest
length of the time series.

Because, in any case, the empirical identification of
an acceptable nonlinear closure has, at its heart, a mul-
tidimensional regression problem that can be numeri-
cally demanding, it is quite helpful to minimize the
number of free variables in a given number of patterns
and for some predefined class of closure schemes. It is
therefore, from a theoretical point of view, attractive to
exclude by use of first principles beforehand as many
conceivable candidates for reduced closed models as
possible. In this respect much can already be gained
from the fact that our two-layer model has no orography
and that all physical processes included are independent
of longitude. From this it can be deduced that each EOF
must be completely contained within the subspace of
one zonal wavenumber. Also, for PIPs it can be shown
that the identified PIP subspace must have an ortho-
normal set of basis vectors that have the same property.

We assume the tendency equations of the reduced
model to be at most quadratic in the expansion coeffi-
cients of the state vector in all patterns, as also projected
and truncated (nonclosed) models are. Zonal symmetry
in the boundary conditions and physical processes in
the two-layer model, together with the associability of
each basic pattern with a single zonal wavenumber can
then be further used to greatly diminish the number of
terms allowed in the tendency equations. A lot of helpful
coupling conditions arise that are by no means due to
the quadratic nature of the model. Generalizations are
easily possible for all models with tendencies given by
polynomials of the expansion coefficients.

As experience tells us, purely projected and truncated
(i.e., nonclosed) models never exhibit catastrophic
growth of energy at any time. The crucial point now is
to ensure that the difference of the reduced model from
the purely projected and truncated version, that is, the
closure terms, does not lead to such an effect either.
This can be done by demanding that all closure terms
do not change the time derivative of turbulent energy
as given by the truncated model. Following such an
approach, we have derived a set of constraints on the
closure corrections, the use of which we could show in
all cases examined to facilitate avoidance of the above-
described stability problems.

The best closure corrections have been determined
both in the EOF and PIP case by minimizing for our

dataset (days 2001–4000 of the time series) the squared
sum of differences between observed and model ten-
dencies. In spite of the fact that unconstrained linear
closures have so far not been found to destroy, in the
absence of nonlinear closure terms, a reduced model’s
longtime simulation capability, we observe the opposite
for the general case. Unconstrained determination of
linear closure terms for nonlinearly closed EOF models
leads to reduced models that are much less well behaved
than the ones with linear closure terms not violating
turbulent energy conservation. In simulations with the
first, wave energy tends to become dramatically too
large. Thus, in nonlinear closure schemes it seems rather
helpful to ensure that even the linear closure terms do
not lead to time derivatives of turbulent energy that are
different from the one in truncated models. This means
that at any time there is absolutely no net exchange of
energy between resolved and unresolved modes. It is
clear that, in reality, only on time average, that is, in a
statistical sense, should net energy loss by the resolved
modes vanish because of a balance between energy in-
flux at predominantly large, and outflow at mainly small,
scales. The progress made possible by the scheme jus-
tifies the approach. Nonetheless, improvements that take
this discrepancy into account might still be possible.
This notwithstanding, nonlinearly closed models using
our approach are already superior to nonclosed models,
both with respect to short-time prediction (as checked
by standard prediction tests) and to longtime climate
simulations. Both time and zonal climate means and the
typical frequency behavior of turbulent energy are much
better reproduced with than without a closure. As for
the reductive capabilities, it is found that a closed model
with 17 EOFs (7 zonally symmetric, 10 in wave sub-
space) is rather well able to simulate most important
aspects of the original time series. It can be expected
that a reduced model with higher nonlinearity than qua-
dratic (as used here) could suffice with even less pat-
terns.

PIP analyses have been conducted for the same da-
taset with a PIP model analogous to the best closed EOF
model, that is, with energy-conserving linear and non-
linear closure corrections. In addition to the model clo-
sure coefficients the patterns also were variables of the
associated minimization problem. The minimized rela-
tive tendency error can be reduced further by about an
order of magnitude in comparison to closed EOF mod-
els. As a consequence nonlinearly closed PIP models
are strongly superior to closed EOF models with respect
to short-time prediction. Similar advantages are ob-
served for long-time climate simulations, provided an
additional error modeling scheme is utilized, after in-
tegrating the PIP model, for parameterizing the differ-
ence between the state vector and its projection onto the
PIP subspace as a function of all PIP expansion coef-
ficients. At the same number of patterns PIPs are at least
as good as EOFs with a closed model at simulating
important time and zonal means. In long-time simula-
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TABLE 1. Relative tendency variance error made in the explanation of the tendencies in days 2001–4000 from runs of the two-layer model
as the one analyzed so far in this work, but with different Newtonian cooling hN, by various reduced models with 15 patterns, with patterns
and closure terms as determined from the previously analyzed time series with hN 5 0.1 d21. EOF (P) denotes projected (nonclosed) EOF
model, EOF (LC) the nonlinearly closed EOF model with energy conserving closure terms, and PIP (nlc) the nonlinearly closed PIP model.
The corresponding number for the projected (nonclosed) EOF model using for each time series its own (new) leading 15 EOFs is also given.

hN (d21) EOF (P, new patterns) EOF (P) EOF (LC) PIP (nlc)

0.09
0.08
0.07
0.06
0.05

1.902 3 1023

2.392 3 1023

3.372 3 1023

4.736 3 1023

4.449 3 1023

1.627 3 1023

2.302 3 1023

3.917 3 1023

5.970 3 1023

8.090 3 1023

4.748 3 1024

1.726 3 1023

5.133 3 1023

1.199 3 1022

1.960 3 1022

1.474 3 1024

7.131 3 1024

2.249 3 1023

5.472 3 1023

9.475 3 1023

tions they are clearly better at reproducing most im-
portant frequencies of energy in the data. Reductions
with a linearly closed PIP model without conservation
constraints have also been performed. For these no ad-
vantage over nonlinearly closed EOF models was found.

In a nutshell, we have outlined a viable approach for
extracting from data of complex atmospheric models
reduced models on the basis of EOFs or PIPs with a
total energy metric that includes a nonlinear closure
scheme parameterizing the impact of not explicitly re-
solved components of the dynamics. Closed models de-
termined by the approach are much more powerful than
purely projected (nonclosed) EOF models. Given that
in long-time simulations EOF models also tend to have
reasonable merits, the choice of the kind of patterns
(EOFs or PIPs) to be used will in practice depend strong-
ly on the stringency of the requirements for the reduced
model. Here the numerical effort can also play its part.
As an example, the extraction of a reduced model on
the basis of 15 EOFs took 14 h 30 min on an HP 735/
125 workstation, whereas a PIP reduction for the same
number of patterns needed about 960 h on the same
machine. It should be noted that there might still be one
possibility of considerably reducing this time. Since
with respect to the closure coefficients the optimization
problem is a linear one, it would be possible to solve
for every set of patterns this part by standard methods
and use the (analytic) result in the relative tendency
variance error. The minimization problem might thus be
reduced to one with respect to the pattern coefficients.

For climatological applications another point might
be interesting to note. There can be no doubt that all of
the closure corrections (and the optimal patterns) are in
reality functions of the parameters of the complex sys-
tem. Changes in these do, in principle, necessitate new
determinations of all patterns and closure terms from a
time series produced by a model with the new param-
eters. On the other hand, a short analysis has shown
that, for not too dramatic changes, all can at least ap-
proximately be assumed to be constant. Table 1 gives
the result obtained by using the above-determined clo-
sure corrections and patterns for both an EOF model
(LC, that is, with energy conservation in all closure
terms) and a PIP model with 15 patterns in recalculating
the relative tendency variance error in explaining days
2001–4000 of time series produced by the same two-

layer model as before, but with Newtonian cooling hN

relaxed by varying degrees. For modest changes of this
parameter the old closure corrections and patterns still
give smaller errors than a newly determined nonclosed
EOF model (with patterns determined from the respec-
tive new time series). Larger parameter changes alter
the dynamical character of the new time series so much
(it becomes more irregular) that the old closure correc-
tions lose their usefulness. One might be tempted to
think that the positive result for moderate parameter
changes might be due to the elements of the closure
tensors being much smaller than their projected coun-
terparts. Inspection of this has, however, shown that they
are indeed considerably larger than the latter.

Finally, it should be stressed that the approach taken
here is by no way limited to the special case considered.
Although zonal symmetry in boundary conditions and
physics of the examined system helps in reducing the
numerical effort and also permits theoretically nice be-
forehand results on the class of allowed reduced models,
it is not a prerequisite for the deduction of constraints
on the closure terms ensuring energy conservation.
Also, the quasigeostrophy of the examined system or
the number of layers is no precondition for the appli-
cability of the approach. The numerical effort for the
reduction of multilayer primitive equation models
would be greater and possibly only tolerable on high-
performance computers. Nonetheless, given the pros-
pect that a reduced model of atmospheric flow could be
much more transparent to conceptual understanding of
simulation results than standard complex models, we
are optimistic that the admittedly still long way toward
such an aim will eventually be successfully taken.
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APPENDIX

Derivation of the Tendency Equations for the
Projected EOF Model

Together with the reality conditions (13) and (14) the
spherical harmonic expansions (4) and (5) can be re-
written as
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0 0 m m m mc 5 c Y 1 c Y 1 c Y (A1)O O 1 2n n n n n n
n m.0,n

and

0 0 m m m mt 5 t Y 1 t Y 1 t Y . (A2)O O 1 2n n n n n n
n m.0,n

The truncated EOF expansions of these are
0 0ˆc 5 c 1 (c ) YOtr tr n n

n

m m m m1 3(c ) Y 1 (c ) Y 4 (A3)O tr n n tr n n
m.0,n

and
0 0t 5 t̂ 1 (t ) YOtr tr n n

n

m m m m1 3(t ) Y 1 (t ) Y 4 (A4)O tr n n tr n n
m.0,n

with

z 0z (c ) if m 5 0O n n n
nm(c ) 5 (A5)tr n

w m5 w (c ) if m . 0O n n n
n

and

z 0z (t ) if m 5 0O n n n
nm(t ) 5 (A6)tr n

w m5 w (t ) if m . 0.O n n n
n

Each ( and ( (m . 0) is identical to one orz 0 w m zc ) c ) en n n n in

, respectively. The same holds for the equivalent co-wein

efficients of the baroclinic streamfunction. Inserting
(A5) into (A3) and (A6) into (A4) yields as expressions
for the truncated streamfunctions

z w wˆc 5 c 1 z c 1 w c 1 w c (A7)O O 1 2tr n n n n n n
n n

and

z w wt 5 t̂ 1 z t 1 w t 1 w t , (A8)O O 1 2tr n n n n n n
n n

where
z z 0 0c 5 (c ) Y , (A9)On n n n

n

z z 0 0t 5 (t ) Y , (A10)On n n n
n

w w m mn nc 5 (c ) Y , (A11)On n n n
n

and

w w m mn nt 5 (t ) Y . (A12)On n n n
n

In the last two equations we have used the fact that each
wave EOF has only one zonal wavenumber.

Now we are ready for calculating the projected ten-
dency equations. Using in (25) and (26) the metric as
defined in (23) together with the facts that because of
the orthonormality of spherical harmonics, that is,

m9 mdVY Y 5 d d , (A13)R n9 n mm9 nn9
4p

for any two horizontal functions

m m m mf 5 f Y and g 5 g YO On n n n
m,n m,n

m mf g 5 dV fg, (A14)O n n R
m,n 4p

and that

2 m m¹ Y 5 2n(n 1 1)Y ,n n

we obtain

1 ]c
z 2ż 5 2 dV c ¹ (c , t )n R n tr tr[2 ]t4p

]t
z 2 21 t (¹ 2 r ) (c , t ) (A15)n tr tr ]]t

and

]c
w 2ẇ 5 2 dV c ¹ (c , t )n R n tr tr[ ]t4p

]t
w 2 21 t (¹ 2 r ) (c , t ) , (A16)n tr tr ]]t

which, together with (A7) and (A8), spherical harmonic
orthonormality, and the coupling conditions that

m m m1 2 3dV3Y J(Y , Y )4R n n n1 2 3
4p

is only nonzero if . 0 and m1 5 m2 1 m3
2 2m 1 m2 3

(Silberman 1954), gives the desired equations (28) and
(29) where

1
pr z 2 z z 2 2 2 z z 2 z z 2 zA 5 2 dV c {k ¹ (t 2 c ) 2 k¹ [¹ (¹ c )]} 2 t {k ¹ (t 2 c ) 2 h r t5nm R n s m m m n s m m N m2 4p

2 2 2 2 z1 k(¹ 2 r )[¹ (¹ t )]} , (A17)6m
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1
pr z w 2 w w 2 w w 2 w w 2 wB 5 dV c [J(c , ¹ c ) 1 J(t , ¹ t ) 1 J(c , ¹ c ) 1 J(t , ¹ t )]5nmr R n m r r r r m r m2 4p

z w 2 2 w w 2 w w 2 2 w w 2 w1 t {J[c , (¹ 2 r )t ] 1 J(t , ¹ c ) 1 J[c , (¹ 2 r )t ] 1 J(t , ¹ c )} , (A18)6n m r m r r m r m

w w]c ]tm mpr w w w 2 w w 2 2 wC 5 dV 2 c 1 t 2 c {k ¹ (t 2 c ) 2 k[¹ (¹ c )]}nm R n n n s m m m5 1 2]l ]l4p

w 2 w w 2 w 2 2 2 2 w1 t {k ¹ (t 2 c ) 2 h r t 1 k(¹ 2 r )[¹ (¹ t )]}n s m m N m m

w w 2 w 2 2 w 2 wˆ ˆ1 c [J(c , ¹ c) 1 J(t , ¹ t̂) 1 J(c, ¹ c ) 1 J(t̂, ¹ t )]n m r m m

w w 2 2 w 2 2 2 w 2 wˆ ˆ1 t {J[c , (¹ 2 r )t̂] 1 J(t , ¹ c) 1 J[c, (¹ 2 r )t ] 1 J(t̂, ¹ c )} , (A19)n m m m m 6
pr w w 2 z w 2 z z 2 w z 2 wD 5 dV c [J(c , ¹ c ) 1 J(t , ¹ t ) 1 J(c , ¹ c ) 1 J(t , ¹ t )]5nmr R n r m r m m r m r

4p

w w 2 2 z w 2 z z 2 2 w z 2 w1 t {J[c , (¹ 2 r )t ] 1 J(t , ¹ c ) 1 J[c , (¹ 2 r )t ] 1 J(t , ¹ c )} , (A20)6n r m r m m r m r

pr w w 2 w w 2 w w w 2 2 w w 2 wE 5 dV c [J(c , ¹ c ) 1 J(t , ¹ t )] 1 t {J[c , (¹ 2 r )t ] 1 J(t , ¹ c )} , (A21)5 6nmr R n m r m r n m r m r
4p

and

pr w w 2 w w 2 w w 2 w w 2 wF 5 dV c [J(c , ¹ c ) 1 J(t , ¹ t ) 1 J(c , ¹ c ) 1 J(t , ¹ t )]5nmr R n m r m r r m r m
4p

w w 2 2 w w 2 w w 2 2 w w 2 w1 t {J[c , (¹ 2 r )t ] 1 J(t , ¹ c ) 1 J[c , (¹ 2 r )t ] 1 J(t , ¹ t )} . (A22)6n m r m r r m r m
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